skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Crooks, Kevin"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. ABSTRACT Reducing human–wildlife conflict is critical for global biodiversity conservation and supporting livelihoods in landscapes where people and wildlife co‐occur. Interventions intended to reduce conflicts and their negative outcomes are diverse and widespread, yet there is often a dearth of empirical evidence regarding effectiveness, particularly at appropriate spatiotemporal scales. We investigate an underappreciated question relevant to large carnivore–livestock systems globally regarding spillover effects of anti‐conflict interventions: Do fortified livestock enclosures modify carnivore predation on livestock for neighbors who lack such interventions? We use ca. 25,000 monthly reports from agropastoralists in an East African landscape critical for large carnivore conservation. Results from Bayesian multilevel statistical models demonstrate robust effects of fortified livestock enclosures in reducing reported predation not only in target households, but also in neighboring households that lack such fortification—a beneficial spillover effect. Results provide empirical evidence for policy and practice regarding tools to reduce large carnivore conflicts while pointing to the important role of complex‐systems processes in determining coexistence outcomes. 
    more » « less
    Free, publicly-accessible full text available March 1, 2026
  2. null (Ed.)
  3. null (Ed.)
    Human activity and land use change impact every landscape on Earth, driving declines in many animal species while benefiting others. Species ecological and life history traits may predict success in human-dominated landscapes such that only species with “winning” combinations of traits will persist in disturbed environments. However, this link between species traits and successful coexistence with humans remains obscured by the complexity of anthropogenic disturbances and variability among study systems. We compiled detection data for 24 mammal species from 61 populations across North America to quantify the effects of (1) the direct presence of people and (2) the human footprint (landscape modification) on mammal occurrence and activity levels. Thirty-three percent of mammal species exhibited a net negative response (i.e., reduced occurrence or activity) to increasing human presence and/or footprint across populations, whereas 58% of species were positively associated with increasing disturbance. However, apparent benefits of human presence and footprint tended to decrease or disappear at higher disturbance levels, indicative of thresholds in mammal species’ capacity to tolerate disturbance or exploit human-dominated landscapes. Species ecological and life history traits were strong predictors of their responses to human footprint, with increasing footprint favoring smaller, less carnivorous, faster-reproducing species. The positive and negative effects of human presence were distributed more randomly with respect to species trait values, with apparent winners and losers across a range of body sizes and dietary guilds. Differential responses by some species to human presence and human footprint highlight the importance of considering these two forms of human disturbance separately when estimating anthropogenic impacts on wildlife. Our approach provides insights into the complex mechanisms through which human activities shape mammal communities globally, revealing the drivers of the loss of larger predators in human-modified landscapes. 
    more » « less